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We report the direct observation of the excited L = 1 state B ¤
s2 in fully reconstructed decays to

B + K ¡ . The massof the B ¤
s2 mesonis measuredto be 5839:6§ 1:1 (stat.) § 0:7 (syst.) MeV/ c2 , and
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its production rate relativ e to the B + mesonis measuredto be [1:15§ 0:23 (stat.) § 0:13 (syst.)]%.

PACS numbers: 13.25.Hw, 14.40.Nd

To date, the detailed spectroscopy of mesonscontain-
ing a b quark has not been fully established. Only the
ground J P = 0¡ states B + , B 0, B 0

s , B +
c and the excited

1¡ state B ¤ are established according to the PDG [1].
Previous studies of excited (¹bs) states have beencarried
out using inclusive ¯nal states, with no mass measure-
ment reported [2]. The properties of (¹bs) excited states,
and comparisonwith the properties of the (¹bu) and (¹bd)
systems,provide tests of various models of quark bound
states and are important for their continuing develop-
ment.

Quark models predict the existence of four P-wave
(L = 1) states in the (¹bs) system: two broad reso-
nances(B ¤

s0 and B 0
s1) and two narrow resonances(Bs1

and B ¤
s2) [3, 4]. The broad resonancesdecay via S-wave

processesand therefore are expected to have widths of a
few hundred MeV/ c2. Such states are di±cult to distin-
guish, in e®ective massspectra, from the combinatorial
background. The narrow resonancesdecay via D-wave
processes(L = 2) and should have widths of approxi-
mately 1 MeV/ c2 [5], which are strongly dependent on
their masses.The Bs1 width may also be in°uenced by
interference with the wide B 0

s1 state, since they have
the same quantum numbers. If the mass of the B sJ

(J = 1; 2) is large enough,the main decay channel should
be BsJ ! B (¤) K , since the Bs¼channel is forbidden by
isospin conservation. A recent result by the CDF collab-
oration reports the observation of two narrow resonances
consistent with the Bs1 and B ¤

s2 states [6].
This Letter presents the observation of the pro-

cessB ¤
s2 ! B + K ¡ with exclusively reconstructed B +

mesons,using a data sample corresponding to 1:3 fb¡ 1

integrated luminosity collectedwith the D0 detector [7, 8]
at the Fermilab Tevatron collider during 2002{2006.
Charge conjugated states are implied throughout this
Letter.

The search for narrow BsJ mesonsis performed by
examining events with B +( ¤) K ¡ decays. This sample
includes the following decays:

Bs1 ! B ¤+ K ¡ ; B ¤+ ! B + ° ; (1)

B ¤
s2 ! B ¤+ K ¡ ; B ¤+ ! B + ° ; (2)

B ¤
s2 ! B + K ¡ : (3)

The direct decay Bs1 ! B + K ¡ is forbidden by conser-
vation of parit y and angular momentum. In decays (1)
and (2), the photons from the B ¤+ decay have energy
E(° ) = (45:78 § 0:35) MeV [1]. These photons are not
reconstructed in this analysis, so that for such events
the invariant mass of the reconstructed decay products
is shifted down by E(° ).

The data for this analysis were selectedwithout any
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FIG. 1: Invariant mass di®erence ¢ M = M (B + K ¡ ) ¡
M (B + ) ¡ M (K ¡ ) for exclusive B decays. The line shows
the ¯t described in the text, with signal and background con-
tributions also plotted separately.

explicit trigger requirement, although most events sat-
isfy inclusive single-muon triggers. The B + mesonsare
reconstructed in the exclusive decay B + ! J=ÃK + with
J=Ã decaying to ¹ + ¹ ¡ . The selectionprocedureused is
exactly as described in Ref. [9]. All B mesonswith mass
5:19 < M (B + ) < 5:36 GeV/ c2 are used, which yields a
sampleof 20915§ 293(stat.) § 200(syst.) B + candidates.

For each reconstructed B + meson,an additional track
with transverse momentum (PT ) above 0:6 GeV/ c and
chargeopposite to that of the B + mesonis selected.This
track is assignedthe kaon mass.

For any track i , the signi¯cance Si is de¯ned as Si =p
[±T =¾(±T )]2 + [±L =¾(±L )]2, where ±T (±L ) is the pro-

jection of the track impact parameter on the plane per-
pendicular to the beam direction (along the beam di-
rection), and ¾(±T ) [¾(±L )] is its uncertainty. Since the
BsJ mesonsdecay at the production point, the additional
track is required to originate from the primary vertex by
applying the condition on its signi¯cance SK <

p
6. The

primary vertex is de¯ned using the method described in
Ref. [10].

For each combination satisfying the above criteria, the
massdi®erence¢ M = M (B + K ¡ ) ¡ M (B + ) ¡ M (K ¡ )
is computed from the reconstructed mesonmasses.The
resulting distribution of ¢ M is shown in Fig. 1.

Of the three decays (1{3) through which the B sJ states
can reach the ground state B + , oneor more may be kine-
matically forbidden if the excited state mass is smaller
than the mass of the decay products. From inspection
of Fig. 1, there is a single region of excessevents above
the background at ¢ M = 67 MeV/ c2, therefore the ¯t is
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basedon the hypothesis that only one decay channel is
observed. From kinematic considerationsit follows that
this is the highest energy transition, i.e. B ¤

s2 ! B + K ¡ .
Alternativ e hypothesesare discussedlater.

Since the decay B ¤
s2 ! B + K ¡ occurs very close to

the threshold ¢ M = 0 MeV/ c2, its width ¡ should be
around 1 MeV/ c2 [5]. Becausethis is much lessthan the
detector resolution, which is of order 6 MeV/ c2, the ¯t is
insensitive to valuesof ¡ below 6 MeV/ c2, and ¡ is ¯xed
at 1:0 MeV/ c2. This is the width expected for a B ¤

s2
mesonwith massasobserved in this study. A systematic
uncertainty is assignedto this choiceof ¡ by ¯tting with
a selectionof small widths in the range 0 to 2 MeV/ c2.

Based on the above, the experimental distribution is
¯tted to the following function using a binned maximum-
likelihood approach:

F (¢ M ) = Fsig(¢ M ) + Fbckg (¢ M );

Fsig(¢ M ) = N ¢D(¢ M ; ¢ 0; ¡) : (4)

In these equations, ¢ 0 is the central position of the
resonance,i.e. M (B ¤

s2) ¡ M (B + ) ¡ M (K ¡ ), ¡ is the
B ¤

s2 width, and N gives the total number of observed
B ¤

s2 ! B + K ¡ decays. The background is parameterized
by a modi¯ed power-law function:

Fbckg (¢ M ) = c ¢(¢ M )k + d ¢¢ M ; (5)

where the parametersc, d and k participate in all ¯ts.
The function D(¢ M ; ¢ 0; ¡) in Eq. (4) is the convo-

lution of a relativistic Breit-Wigner function with the
experimental Gaussianresolution in ¢ M . The width of
resonancesin the Breit-Wigner function takes into ac-
count threshold e®ectsusing the Blatt-W eisskopf form
factor for L = 2 decay [1, 11].

The detector resolution function is determined from
Monte Carlo simulation. All processesinvolving B
mesonsare simulated using the EvtGen generator [12]
interfaced with pythia [13], followed by full modeling of
the detector responsewith geant [14] and event recon-
struction as in data. The di®erencebetween the recon-
structed and generated values of ¢ M is parameterized
by a double-Gaussianfunction, with the width ¾1 (¾2)
of the narrow (wide) Gaussian set to 2.7 MeV/ c2 (6.2
MeV/ c2), and the normalisation of the narrow Gaussian
set to 1:2 times that of the wide Gaussian. Studies of
the B + ! J=ÃK + and D ¤+ ! D 0¼+ decays show that
simulation underestimatesthe massresolution in data by
¼10%. Therefore, the widths of the Gaussianswhich pa-
rameterise the BsJ resolution are increasedby 10% to
match the data, and a 100% systematic uncertainty is
assignedto this correction.

Using a ¯tting range of 0 < ¢ M < 150 MeV/ c2, cov-
ering 50 bins, a binned maximum likelihood ¯t is per-
formed. The following parametersof B ¤

s2 are obtained:

¢ 0 = M (B ¤
s2) ¡ M (B + ) ¡ M (K ¡ )

= 66:7 § 1:1 (stat.) MeV/ c2;

N = 125§ 25 (stat.) events: (6)

Without the B ¤
s2 signal contribution, the log-likelihood

of the ¯t decreasesby 13:4, which implies that the signal
is observed with a statistical signi¯cance of more than
4:8¾.

To convert the ¢ 0 result into a massmeasurement on
B ¤

s2, the PDG values of the B + (5279:1 § 0:5 MeV/ c2)
and K ¡ (493:677§ 0:013MeV/ c2) massesare usedas in-
puts [1]. The uncertainties on these values are included
in the systematic uncertainty on the B ¤

s2 mass. In addi-
tion, the massis corrected by an amount ²M to account
for the D0 momentum scaleuncertainty. This correction
is in proportion to the di®erencebetweenthe massof the
B + as measuredby D0, and as listed by the PDG [1],
leading to an upward shift in mass²M = +0 :07 MeV/ c2.
A 100%systematic uncertainty is assignedto this correc-
tion. Taking all factors into account, the massM (B ¤

s2)
is measuredto be:

M (B ¤
s2) = 5839:6 § 1:1 § 0:7 MeV/ c2; (7)

where the ¯rst uncertainty is statistical, the secondsys-
tematic.

Taking the detected number of B + (20915§ 293) and
B ¤

s2 (125 § 25) candidates, the production rate of B ¤
s2

relative to that of B + is calculated as follows:

RJ =
B r (b ! B ¤

s2 ! B + K ¡ )
B r (b ! B + )

=
N (B ¤

s2)
N (B + ) ¢"

= (1:15§ 0:23§ 0:13)%: (8)

Here " is the relative detection e±ciency of B ¤
s2 events

compared to B + events, i.e. it is the e±ciency to select
the additional kaon from the B ¤

s2 decay. The value of
this parameter is determined from simulation to be " =
0:518§ 0:011 (stat.), where the uncertainty results from
the ¯nite size of the simulation and is thus propagated
into the measurement of RJ as a systematic uncertainty.
Emphasisis placedon agreement betweenthe transverse
momentum distributions in data and in simulation, and
a systematic uncertainty is assignedto " to account for
any di®erence.

Theoretical modelspredict that the B ¤
s2 meson,exclud-

ing phase-spacefactors, should decay with equal branch-
ing ratios into B ¤+ K and B + K . Decays into B ¤+ K will
be observed asa resonancedisplacedto lower ¢ M by the
missingphoton energy45:78§ 0:35 MeV [1]. An observa-
tion of this kind has already beenmade with the excited
states of the (¹bd) quark system [9].

Since the massdi®erencein the decay B ¤
s2 ! B ¤+ K

is very small, the rate should be strongly suppressedby
a factor proportional to (P ¤=P)5, where P ¤ (P) is the
momentum in the center-of-massframe of the kaon in the
decay B ¤

s2 ! B ¤+ K (B + K ) [5]. Using the B ¤
s2 massas

measuredhere,a suppressionfactor of 0.074is calculated;
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FIG. 2: Invariant mass di®erence ¢ M = M (B + K ¡ ) ¡
M (B + ) ¡ M (K ¡ ) for exclusive B decays. The line shows
the ¯t with a two-peak hypothesis, as described in the text.
Shown separately are contributions from signal and back-
ground.

therefore no detectable B ¤
s2 ! B ¤+ K signal is expected

in the ¢ M distribution with the current statistics.
To test for the presenceof a Bs1 signal in the data, a

two-peak hypothesis is used to ¯t the ¢ M distribution.
The Bs1 peak is assigneda physical width of 0 MeV/ c2,
and parameterizedby a double-Gaussianfunction repre-
senting the experimental detector resolution. The reso-
lution parametersare ¯xed from a separatesimulation of
Bs1 ! B ¤+ K ¡ events. In this case,the widths ¾1;2(Bs1)
of the narrow and wide Gaussiansare determined to be
1.1and 2.2MeV/ c2 respectively, and the normalisation of
the narrow Gaussianis 3:6 times that of the wide Gaus-
sian. Again, the widths of the Gaussiansare increased
by 10% to correct for underestimation in simulation.

The resulting ¯t is shown in Fig. 2, giving the following
parameters for the Bs1 signal:

¢ M (Bs1) = M (B + K ¡ ) ¡ M (B + ) ¡ M (K ¡ )

= M (Bs1) ¡ M (B ¤+ ) ¡ M (K ¡ )

= 11:5 § 1:4 (stat.) MeV/ c2;

N = 25§ 10 (stat.) events: (9)

Without the Bs1 signal contribution, the log-likelihood of
the ¯t decreasesby 2:7, which implies that this structure
is observed with a statistical signi¯cance of lessthan 3¾.
Hencewith the current data, the existenceof a B s1 state
can be neither con¯rmed nor excluded. The nominal Q-
value ¢ M (Bs1) agreeswell with the recent measurement
by CDF [6].

For the B ¤
s2 mass¯t, the in°uencesof di®erent sources

of systematicuncertainty are estimatedby examining the
changes in the ¯t parameters under a number of vari-
ations. The parameters describing the background are
allowed to vary in the ¯t and their uncertainties are in-
cluded in our results. A systematic uncertainty is as-

signedto the background ¯t by repeating the ¯t with the
parameter k ¯xed at di®erent valuescloseto its conver-
gencepoint (seeEq. 5). The e®ectof binning is tested
by varying the bin width and position. In addition, the
¯t is made without the 10% massresolution correction.
To check the e®ectof ¯xing the physical width ¡ of B ¤

s2
at 1.0 MeV/ c2, the ¯t is repeated with di®erent widths
in the range 0 { 2 MeV/ c2. The uncertainty in the abso-
lute momentum scale,which results in a small shift of all
measuredmasses,is assigneda 100% systematic uncer-
tainty. Finally, the uncertainties on the PDG massesof
B + and K ¡ [1] arepropagatedinto the systematicuncer-
tainty on the B ¤

s2 mass. The summary of all systematic
uncertainties in the B ¤

s2 mass¯t is given in Table I.

TABLE I: Systematic uncertainties of the B ¤
s2 parameters de-

termined from the ¢ M ¯t and from the conversion into the
mass M (B ¤

s2). The rows show the various sourcesof system-
atic uncertainty as described in the text. The columns show
the resulting uncertainties for the two free signal parameters
as described in Eq. (4).

Source ±M (B ¤
s2) (MeV/ c2) ±N

Background parameterization 0.0 3
Bin widths/p ositions 0.3 7
Value of ¡ 0.3 5
PDG massuncertainties 0.5 0
Momentum scale 0.1 0
Resolution uncertainty 0.1 3
Total 0:7 10

The measurement of the relative production rate RJ

uses the kaon detection e±ciency predicted in simula-
tion, as well as the numbers of B ¤

s2 and B + events. The
systematic uncertainty on the number of B + events, de-
scribed in Ref. [9], is § 200 events. The systematic un-
certainty on the number of B ¤

s2 events is § 10 events (see
Table I).

The uncertainty of the impact parameter resolution
in the simulation is estimated to be ¼10% [15]. It can
in°uence the measurement of the selection e±ciency of
the kaon from the B ¤

s2 decay. To test for the e®ectof
such an uncertainty, the e±ciency is recalculated with
the kaon impact parameter requirement varied by § 10%.
The resulting variation in e±ciency is § 0:022.

The track reconstruction e±ciency for particles with
low transversemomentum is measuredin Ref. [16], and
good agreement between data and simulation is found.
This comparison is valid within the uncertainties of
branching fractions of di®erent B semileptonic decays,
which is about 7%. This uncertainty translates to an
e±ciency variation of § 0:036. An additional systematic
e®ect,associated with the di®erencein the momentum
distributions of selectedparticles in data and in simula-
tion, is taken into account. This yields an uncertainty in
the e±ciency of § 0:002.

Combining all thesee®ectsin quadrature, the total sys-
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TABLE I I: Systematic uncertainties in the B ¤
s2 production rate measurement. The rows show the various sourcesof systematic

uncertaintys as described in the text. The columns show the e®ectof these sourceson the three parameters used in the R J

measurement, and on the production rate itself.

source ±[N (B ¤
s2)] ±[N (B + )] ±(" ) ±(RJ )(%)

N (B ¤
s2) uncertainty 10 | | 0.08

N (B + ) uncertainty | 200 | 0.01
Reweighting correction | | 0.002 0.00
Impact parameter resolution | | 0.022 0.05
Track reconstruction e±ciency | | 0.036 0.08
Statistical e®ectsfrom simulation | | 0.011 0.02
Total 10 200 0.044 0:13

tematic uncertainty on the e±ciency " is 0:042. Both this
and the statistical uncertainty 0:011on " must be propa-
gated into the production rate measurement. The e®ects
of contributions from the e±ciency, and the number of
detected B + and B ¤

s2 candidates,are shown in Table I I.
In conclusion, the B ¤

s2 state is observed in de-
cays to B + K ¡ with a statistical signi¯cance of
more than 4:8¾. The measured mass is 5839:6 §
1:1(stat.)§ 0:7(syst.) MeV/ c2. This is consistent with
results from OPAL [2] and CDF [6]. The B ¤

s2 rela-
tiv e production rate with respect to the B + meson is
[1:15 § 0:23(stat.)§ 0:13(syst.)]%. Searching for a B s1

signal gives inconclusive results with the currently avail-
able data set, which is expected to increaseby a factor
of ¯v e in the next few years.
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